Investigations of the Spectral Characteristics of 980-nm InGaAs–GaAs–AlGaAs Lasers

نویسندگان

  • Ivan A. Avrutsky
  • Reuven Gordon
  • Jimmy M. Xu
چکیده

Semiconductor quantum-well (QW) lasers at 980 nm exhibit unique spontaneous emission spectra with a periodic envelope of approximately 2 3-nm wavelength. This phenomenon has been observed in both front facet and side spontaneous emission. The modulation is modeled in terms of coupling between the laser waveguide and the substrate waveguide which is transparent to 980-nm light. Modal gain spectra of the entire waveguide structure including substrate are calculated numerically by a transfer matrix method. The gain spectra in the active stripe and loss spectra in the unpumped QW exhibit modulation. This results in modulation of the emission spectra. An analytical approach based on coupled mode equations is developed to explain and clarify the results of the numerical modeling. The interesting case of a coupling length that is small by comparison with the gain/loss length is examined in detail. Front facet and side spontaneous emission spectra calculated using the modal gain spectra are in good agreement with the measured spectra. The results presented make it possible to interpret the unique modal characteristics of 980-nm lasers quantitatively and relate them to the physical structural parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic index separate confinement heterostructure InGaAs/AlGaAs multiple quantum well laser grown by organometallic vapor phase epitaxy

Organometallic vapor phase epitaxy was used to grow a novel periodic index separate confinement heterostructure (PINSCH) InGaAs/AlGaAs multiple quantum well (MQW) laser. Secondary ion mass spectrometry and transmission electron microscopy were used to characterize the structure. The performance of the PINSCH laser was compared with that of a graded index separate confinement heterostructure (GR...

متن کامل

Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure laser

Data are presented showing that, besides the improvement in carrier collection, it is advantageous to locate strain-matching auxiliary InGaAs layers @quantum wells ~QWs!# within tunneling distance of a single-quantum-dot ~QD! layer of an AlGaAs–GaAs–InGaAs–InAs QD heterostructure laser to realize also smaller size QDs of greater density and uniformity. The QD density is changed from 2310/cm for...

متن کامل

Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes

In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...

متن کامل

High-Brightness Unstable-Resonator Semiconductor Laser Diodes

High-power high-brightness unstable-resonator edge-emitting semiconductor laser diodes with dry-etched curved mirrors were fabricated and characterized. The epitaxial structure was optimized for high output power operation and consists of a GaAs/AlGaAs gradedindex separate-confinement heterostructure (GRINSCH) with a single 980-nm-emitting InGaAs quantum well. The curved mirrors of the unstable...

متن کامل

High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding

Articles you may be interested in MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers Appl. 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature Appl.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998